![]() MOSFET作為功率開關(guān)管,已經(jīng)是是開關(guān)電源領(lǐng)域的絕對主力器件。雖然MOSFET作為電壓型驅(qū)動器件,其驅(qū)動表面上看來是非常簡單,但是詳細(xì)分析起來并不簡單。下面我會花一點(diǎn)時間,一點(diǎn)點(diǎn)來解析MOSFET的驅(qū)動技術(shù),以及在不同的應(yīng)用,應(yīng)該采用什么樣的驅(qū)動電路。 首先,來做一個實(shí)驗(yàn),把一個MOSFET的G懸空,然后在DS上加電壓,那么會出現(xiàn)什么情況呢?很多工程師都知道,MOS會導(dǎo)通甚至擊穿。這是為什么呢?因?yàn)槲腋緵]有加驅(qū)動電壓,MOS怎么會導(dǎo)通?用下面的圖,來做個仿真: ![]() ![]() 這種情況有什么危害呢?實(shí)際情況下,MOS肯定有驅(qū)動電路的么,要么導(dǎo)通,要么關(guān)掉。問題就出在開機(jī),或者關(guān)機(jī)的時候,最主要是開機(jī)的時候,此時你的驅(qū)動電路還沒上電。但是輸入上電了,由于驅(qū)動電路沒有工作,G級的電荷無法被釋放,就容易導(dǎo)致MOS導(dǎo)通擊穿。那么怎么解決呢? 在GS之間并一個電阻. ![]() 幾乎為0V. ![]() 假如驅(qū)動是個理想脈沖源,那么其驅(qū)動能力就是無窮大,想提供多大電流就給多大。但實(shí)際中,驅(qū)動是有內(nèi)阻的,假設(shè)其內(nèi)阻為10歐姆,在10V電壓下,最多能提供的峰值電流就是1A,通常也認(rèn)為其驅(qū)動能力為1A。 那什么叫驅(qū)動電阻呢,通常驅(qū)動器和MOS的G極之間,會串一個電阻,就如下圖的R3。 ![]() 第二個,重要作用就是調(diào)解驅(qū)動器的驅(qū)動能力,調(diào)節(jié)開關(guān)速度。當(dāng)然只能降低驅(qū)動能力,而不能提高。 對上圖進(jìn)行仿真,R3分別取1歐姆,和100歐姆。下圖是MOS的G極的電壓波形上升沿。 ![]() 下圖,是驅(qū)動的下降沿 ![]() 那么驅(qū)動的快慢對MOS的開關(guān)有什么影響呢?下圖是MOS導(dǎo)通時候DS的電壓: ![]() 下圖是電流波形 ![]() 可以看到,驅(qū)動電阻增加可以降低MOS開關(guān)的時候得電壓電流的變化率。比較慢的開關(guān)速度,對EMI有好處。下圖是對兩個不同驅(qū)動情況下,MOS的DS電壓波形做付利葉分析得到 ![]() 但是驅(qū)動速度慢,又有什么壞處呢?那就是開關(guān)損耗大了,下圖是不同驅(qū)動電阻下,導(dǎo)通損耗的功率曲線。 ![]() 結(jié)論:驅(qū)動電阻到底選多大?還真難講,小了,EMI不好,大了,效率不好。 所以只能一個折中的選擇了。 那如果,開通和關(guān)斷的速度要分別調(diào)節(jié),怎么辦?就用以下電路。 ![]() 對于NMOS來說,必須是G極的電壓高于S極一定電壓才能導(dǎo)通。那么對于對S極和控制IC的地等電位的MOS來說,驅(qū)動根本沒有問題,如上圖。 但是對于一些拓?fù),比如BUCK(開關(guān)管放在上端),雙管正激,雙管反激,半橋,全橋這些拓?fù)涞纳瞎埽蜎]辦法直接用芯片去驅(qū)動,那么可以采用自舉驅(qū)動電路。 看下圖的BUCK電路: ![]() 那么輸入才12V,怎么得到15V的電壓呢? 其實(shí)上管Q1驅(qū)動的供電在于 Cboot。 看下圖,芯片的內(nèi)部結(jié)構(gòu): ![]() 當(dāng)然芯片內(nèi)部的邏輯信號在提供給驅(qū)動的時候,還需要Level shift電路,把信號的電平電壓也提上去。 Buck電路,現(xiàn)在有太多的控制芯片集成了自舉驅(qū)動,讓整個設(shè)計(jì)變得很簡單。但是對于,雙管的,橋式的拓?fù),多?shù)芯片沒有集成驅(qū)動。那樣就可以外加自舉驅(qū)動芯片,48V系統(tǒng)輸入的,可以采用Intersil公司的ISL21XX,HIP21XX系列。如果是AC/DC中,電壓比較高的,可以采用IR的IR21XX系列。 下圖是ISL21XX的內(nèi)部框圖。 ![]() ISL21XX驅(qū)動橋式電路示意圖: ![]() ![]() ![]() ISL21XX驅(qū)動橋式電路示意圖: ![]() ![]() ![]() 自舉電容主要在于其大小,該電容在充電之后,就要對MOS的結(jié)電容充電,如果驅(qū)動電路上有其他功耗器件,也是該電容供電的。所以要求該電容足夠大,在提供電荷之后,電容上的電壓下跌最好不要超過原先值的10%,這樣才能保證驅(qū)動電壓。但是也不用太大,太大的電容會導(dǎo)致二極管在充電的時候,沖擊電流過大。 對于二極管,由于平均電流不會太大,只要保證是快速二極管。當(dāng)然,當(dāng)自舉電壓比較低的時候,這個二極管的正向壓降,盡量選小的。 電容沒什么,磁片電容,幾百n就可以了。但是二極管,要超快的,而且耐壓要夠。電流不用太大,1A足夠。 隔離驅(qū)動。當(dāng)控制和MOS處于電氣隔離狀態(tài)下,自舉驅(qū)動就無法勝任了,那么就需要隔離驅(qū)動了。下面來討論隔離驅(qū)動中最常用的,變壓器隔離驅(qū)動。 看個最簡單的隔離驅(qū)動電路,被驅(qū)動的對象是Q1。 %%%%%%%%%%21 其實(shí)MOS只是作為開關(guān)管,需要注意的是電機(jī)是感性器件,還有電機(jī)啟動時候的沖擊電流。還有堵轉(zhuǎn)時候的的啟動電流。驅(qū)動源參數(shù)為12V ,100KHz, D=0.5。 驅(qū)動變壓器電感量為200uH,匝比為1:1。 %%%%%%%%%%22 紅色波形為驅(qū)動源V1的輸出,綠色為Q1的G級波形?梢钥吹,Q1-G的波形為具有正負(fù)電壓的方波,幅值6V了。為什么驅(qū)動電壓會下降呢,是因?yàn)閂1的電壓直流分量,完全被C1阻擋了。所以C1也稱為隔直電容。 下圖為C1上的電壓。 %%%%%%%%%%23 其平均電壓為6V,但是峰峰值,卻有2V,顯然C1不夠大,導(dǎo)致驅(qū)動信號最終不夠平。那么把C1變?yōu)?70n。Q1-G的電壓波形就變成如下: %%%%%%%%%%24 驅(qū)動電壓變得平緩了些。如果把驅(qū)動變壓器的電感量增加到500uH。驅(qū)動信號就如下圖: %%%%%%%%%%25 驅(qū)動信號顯得更為平緩。從這里可以看到,這種驅(qū)動,有個明顯的特點(diǎn),就是驅(qū)動電平,最終到達(dá)MOS的時候,電壓幅度減小了,具體減小多少呢,應(yīng)該是D*V,D為占空比,那么如果D很大的話,驅(qū)動電壓就會變得很小,如下圖,D=0.9 %%%%%%%%%%26 發(fā)現(xiàn)驅(qū)動到達(dá)MOS的時候,正壓不到2V了。顯然這種驅(qū)動不適合占空比大的情況。從上面可以看到,在驅(qū)動工作的時候,其實(shí)C1上面始終有一個電壓存在,電壓平均值為V*D,也就是說這個電容存儲著一定的能量。那么這個能量的存在,會帶來什么問題呢? 下面模擬驅(qū)動突然掉電的情況: %%%%%%%%%%27 可見,在驅(qū)動突然關(guān)掉之后,C1上的能量,會引起驅(qū)動變的電感,C1以及mos的結(jié)電容之間的諧振。如果這個諧振電壓足夠高的話,就會觸發(fā)MOS,對可靠性帶來危害。那么如何來降低這個震蕩呢,在GS上并個電阻,下圖是并了1K電阻之后波形: %%%%%%%%%%28 但是這個電阻會給驅(qū)動帶來額外的損耗。如何傳遞大占空比的驅(qū)動: 看一個簡單的驅(qū)動電路。 %%%%%%%%%%29 當(dāng)D=0.9的時候 %%%%%%%%%%30 紅色波形為驅(qū)動源輸出,綠色為到達(dá)MOS的波形。基本保持了驅(qū)動源的波形。同樣,這個電路在驅(qū)動掉電的時候,比如關(guān)機(jī),也會出現(xiàn)震蕩。 %%%%%%%%%%31 而且似乎這個問題比上面的電路還嚴(yán)重。下面嘗試降低這個震蕩,首先把R5改為1K %%%%%%%%%%32 確實(shí)有改善,但問題還是嚴(yán)重,繼續(xù)在C2上并一個1K的電阻。 %%%%%%%%%%33 綠色的波形,確實(shí)更改善了一些,但是問題還是存在。這是個可靠性的隱患。對于這個問題如何解決呢?可以采用soft stop的方式來關(guān)機(jī)。soft stop其實(shí)就是soft start的反過程,就是在關(guān)機(jī)的時候,讓驅(qū)動占空比從大往小變化,直到關(guān)機(jī)。很多IC已經(jīng)集成了該功能。 ![]() 對于半橋,全橋的驅(qū)動,由于具有兩相驅(qū)動,而且相位差為180度,那么如何用隔離變壓器來驅(qū)動呢? ![]() 下圖,是兩個驅(qū)動源的波形: ![]() ![]() ![]() 波形如下圖: ![]() 來源:電子工程網(wǎng) |